Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1824548

ABSTRACT

Background The changing pattern of pathogen spectrum causing herpangina in the time of coronavirus disease 2019 (COVID-19) pandemic was unknown. The purpose of this study was to investigate the changes on the molecular epidemiology of herpangina children during 2019-2020 in Tongzhou district, Beijing, China. Method From January 2019 to December 2020, children diagnosed with herpangina were recruited by the staff from Tongzhou Center for Disease Control and Prevention (CDC) in Beijing. Viral RNA extraction from pharyngeal swabs was used for enterovirus (EV) detection and the complete VP1 gene was sequenced. The phylogenetic analysis was performed based on all VP1 sequences for EV genotypes. Result A total of 1,331 herpangina children were identified during 2019-2020 with 1,121 in 2019 and 210 in 2020, respectively. The predominant epidemic peak of herpangina children was in summer and autumn of 2019, but not observed in 2020. Compared to the number of herpangina children reported in 2019, it decreased sharply in 2020. Among 129 samples tested in 2019, 61 (47.3%) children were detected with EV, while 22.5% (20/89) were positive in 2020. The positive rate for EV increased since June 2019, peaked at August 2019, and decreased continuously until February 2020. No cases were observed from February to July in 2020, and the positive rate of EV rebounded to previous level since August 2020. Four genotypes, including coxsackievirus A6 (CV-A6, 9.3%), CV-A4 (7.8%), CV-A10 (2.3%) and CV-A16 (10.1%), were identified in 2019, and only three genotypes, including CV-A6 (9.0%), CV-A10 (6.7%) and CV-A16 (1.1%), were identified in 2020. The phylogenetic analysis showed that all CV-A6 strains from Tongzhou located in Group C, and the predominant strains mainly located in C2-C4 subgroups during 2016-2018 and changed into C1 subgroup during 2018-2020. CV-A16 strains mainly located in Group B, which consisting of strains widely distributed around the world. Conclusions The predominant genotypes gradually shifted from CV-A16, CV-A4 and CV-A6 in 2019 to CV-A6 in 2020 under COVID-19 pandemic. Genotype-based surveillance will provide robust evidence and facilitate the development of public health measures.

2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1608327.v2

ABSTRACT

In this study, we aimed to explore whether Lymphocyte-C-reactive protein ratio (LCR) can differentiate disease severity of Coronavirus disease 2019 (COVID-19) patients and its value as an assistant screening tool for admission to the hospital and the intensive care unit (ICU). A total of 184 adult COVID-19 patients from the COVID-19 Treatment Center in Heilongjiang Province at the First Affiliated Hospital of Harbin Medical University between January 2020 and March 2021 were included in this study. Patients were divided into asymptomatic infection group, mild group, moderate group, severe group, and critical group according to the Diagnosis and Treatment of New Coronavirus Pneumonia (9th edition). Demographic and clinical data including gender, age, comorbidities, severity of COVID-19, white blood cell count (WBC), neutrophil proportion (NEUT%), lymphocyte count (LYMPH), lymphocyte percentage (LYM%), red blood cell distribution width (RDW), platelet (PLT), C-reaction protein (CRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum creatinine (SCr), albumin (ALB), total bilirubin (TB), direct bilirubin (DBIL), indirect bilirubin (IBIL), and D-Dimer were obtained and collated from medical records at admission, from which sequential organ failure assessment (SOFA) score and LCR were calculated, and all above indicators were compared among groups. Multiple clinical parameters, including LYMPH, CRP and LCR, showed significant differences among groups. The related factors to classify COVID-19 patients into moderate, severe and critical groups included age, number of comorbidities, WBC, LCR, and AST. Among these factors, number of comorbidities showed the greatest effect, and only WBC and LCR were protective factors. The area under the receiver operating characteristic (ROC) curve of LCR to classify COVID-19 patients into moderate, severe and critical groups was 0.176. The cut-off value of LCR, and the sensitivity and specificity of ROC curve were 1780.7050, 84.6% and 66.2%, respectively. The related factors to classify COVID-19 patients into severe and critical groups included number of comorbidities, PLT, LCR, and SOFA score. Among these factors, SOFA score showed the greatest effect, and LCR was the only protective factor. The area under ROC curve of LCR to classify COVID-19 patients into severe and critical groups was 0.106. The cut-off value of LCR and the sensitivity and specificity of ROC curve were 571.2200, 81.3% and 90.0%, respectively. In summary, LCR can differentiate disease severity of COVID-19 patients and serve as a simple and objective assistant screening tool for hospital and ICU admission.


Subject(s)
COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1064997.v1

ABSTRACT

Background: In this study, we aimed to determine whether continuous renal replacement therapy (CRRT) with oXiris filter may alleviate cytokine release syndrome (CRS) in non-AKI patients with severe and critical coronavirus disease 2019 (COVID-19). Methods: Non-AKI patients with severe and critical COVID-19 treated between February 14 and March 26, 2020 were included and randomly divided into intervention group and control group according to the random number table. Patients in the intervention group received CRRT with oXiris filter plus conventional treatment, while those in the control group only received conventional treatment. Demographic data were collected and collated at admission. During ICU hospitalization, the serum levels of cytokine and inflammatory chemokines, including IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ, were measured daily to reflect the degree of CRS induced by SARS-CoV-2 infection. Clinical data, including white blood cell count (WBC), neutrophil proportion (NEUT%), lymphocyte count (LYMPH), lymphocyte percentage (LYM%), platelet (PLT), C-reaction protein (CRP), high sensitivity C-reactive protein (hs-CRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), albumin (ALB), serum creatinine (SCr), D-Dimer, fibrinogen (FIB), IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, number of hospital days and sequential organ failure assessment (SOFA) score were obtained and collated from medical records during hospitalization, and then compared between the two groups. Results: Age, and SCr significantly differed between the two groups. Besides the IL-2 level that was significantly lower on day 2 than that on day 1 in the intervention group, and the IL-6 levels that were significantly higher on day 1, and day 2 in the intervention group compared to the control group, similar to the IL-10 level on day 5, there were no significant differences between the groups. Conclusion: CRRT with oXiris filter may not effectively alleviate CRS in non-AKI patients with severe and critical COVID-19. Thus, its application in these patients should be considered with caution to avoid increasing the unnecessary burden on society and individuals and making the already overwhelmed medical system even more strained (IRB number: IRB-AF/SC-04).


Subject(s)
Afibrinogenemia , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL